The Multi-Objective Genetic Algorithm Based Techniques for Intrusion Detection
نویسنده
چکیده
The Multi Objective Genetic Algorithms (MOGAs) are one of the most widely used techniques that have the capability to find the solution to the problem having multiple conflicting objectives like Intrusion Detection. It is a population based technique capable of producing a set of non-inferior solutions that exhibit the classification trade-offs for the user. This capability of MOGA can be exploited for generating optimal base classifiers and ensembles thereof for Intrusion Detection. This paper explores the various MOGAs proposed in the literature along with their pros and cons. The motivation for the use of MOGA and its issues are highlighted. Finally, the chapter highlights the concluding remarks.
منابع مشابه
A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملMulti-Damage Detection for Steel Beam Structure
Damage detection has been focused by researchers because of its importance in engineering practices. Therefore, different approaches have been presented to detect damage location in structures. However, the higher the accuracy of methods is required the more complex deliberations. Based on the conventional studies, it was observed that the damage locations and its size are associated with dynam...
متن کامل